Hydroponics Farming Course, perfect for beginner. 28th September (Sat) - REGISTER

Research, Articles, Design

RSS
Evaluating the Impact of Growlight Configurations on Hydroponic Growth using NFT Method

Evaluating the Impact of Growlight Configurations on Hydroponic Growth using NFT Method

Experiment Title

Evaluating the Impact of Growlight Configurations on Hydroponic Growth using NFT Method

 

Objective

To investigate the effects of different growlight configurations on the growth of plants in hydroponics using the Nutrient Film Technique (NFT) method.

 

Hypothesis

Increasing the number of growlights in conjunction with NFT channels will positively impact plant growth compared to the control group

 

Materials

- 4ft T8 LED growlights (Power: 25W)

- 4ft NFT channels (capable of hosting 8 plants each)

- Hydroponic nutrient solution

- Deangelia RZ lettuce seedlings

- Timer

- Measuring instruments (for growth metrics such as height, leaf count, and biomass)

- Data recording sheets

 

Experimental Setup

1. Control Group (C):

- Two units of 4ft growlights and two units of 4ft NFT channels.

- Growlights are set to operate for 12 hours per day.

 

2. Test 1 Group (T1):

- Two units of 4ft growlights and three units of 4ft NFT channels.

- Growlights are set to operate for 12 hours per day.

 

3. Test 2 Group (T2):

- Two units of 4ft growlights and three units of 4ft NFT channels.

- Growlights are set to operate for 18 hours per day.

 

Group

Total plants

Power (Wh) per day

Power (Wh) per plant per day

Control (C)

16

600

37.50

Test 1 (T1)

24

600

25.00

Test 2 (T2)

24

900

25.00

 

Experimental setup, from top to bottom: Control group, Test 1 group and Test 2 group.

 

Experimental procedure

 

1. The NFT channels were prepared according to manufacturer instructions and filled with hydroponic nutrient solution.

 

2. The lettuce seedlings were planted in the NFT channels with consistent spacing and placement.

 

3. The growlights were installed at an optimal height above the NFT channels to provide uniform light distribution.

 

4. Timers were set up to regulate the light cycles for each group as per the experimental conditions.

 

5. Environment conditions such as temperature, humidity, and nutrient levels were monitored and maintained throughout the experiment to ensure consistency.

 

6. Plant height, leaf count, and biomass of lettuce were measured and recorded weekly for each group.

 

7. Visual inspections were conducted to check for any signs of stress, nutrient deficiencies, or other abnormalities in plant growth.

 

8. Measurements and observations were repeated weekly over the duration of the experiment.


 

Data Analysis

 

  1. Average

 

  1. Average height

 

Week 1

Week 2

Week 3

Week 4

Week 5

Week 6

C

3.83

4.97

6.60

10.33

13.79

14.73

T1

4.17

4.79

7.21

11.50

14.47

15.66

T2

4.03

5.10

7.04

11.37

15.02

18.87

 

 

 

  1. Average leaf count

 

Week 1

Week 2

Week 3

Week 4

Week 5

Week 6

C

4.94

9.25

13.31

18.81

24.75

32.81

T1

5.08

8.83

13.21

19.21

25.46

31.54

T2

5.08

9.21

13.67

22.25

31.17

40.58

 

 

 

  1. Average biomass

 

Week 1

Week 2

Week 3

Week 4

Week 5

Week 6

C

15.88

18.56

22.50

34.50

53.81

85.00

T1

15.54

19.08

23.21

35.92

55.08

78.50

T2

15.83

20.00

26.63

47.29

73.92

115.50

 


  1. ANOVA

 

The tables below shows whether there are significant differences between the groups, which are determined by using ANOVA and pos-hoc test.

 

  1. Height between groups

 

Week 1

Week 2

Week 3

Week 4

Week 5

Week 6

C vs T1

no

no

no

yes

yes

yes

T1 vs T2

no

no

no

no

no

yes

T2 vs C

no

no

no

no

yes

yes

 

 

  1. Leaf count between groups

 

Week 1

Week 2

Week 3

Week 4

Week 5

Week 6

C vs T1

no

no

no

no

no

no

T1 vs T2

no

no

no

yes

yes

yes

T2 vs C

no

no

no

yes

yes

yes

 

 

  1. Biomass between groups

 

Week 1

Week 2

Week 3

Week 4

Week 5

Week 6

C vs T1

no

no

no

no

no

no

T1 vs T2

no

yes

yes

yes

yes

yes

T2 vs C

no

yes

yes

yes

yes

yes

 


 

Observation and Discussion

 

  1. Impact on height

From week 1 to week 3, there is no significant difference in height between the groups. Starting from week 4 until week 6, Test 1 group (three NFT channels) is significantly taller than Control group (two NFT channels). The reduced spacing between NFT channels decreased the power per plant per day, causing the lettuce to grow higher to compete for light. On week 6, Test 1 group is 0.93cm taller than the Control group.

 

Test 2 group have three NFT channels, but the light duration increases from 12 hours to 18 hours per day. It is significantly taller than Test 1 group by 3.21cm on week 6. When compared to the Control group, Test 2 group is significantly taller from week 5 to week 6 by 4.14cm. This means that increasing light duration from 12 hours to 18 hours only compensate for the reduced power per plant per day up until week 4. After week 4, the 18 hours of light per day had caused early bolting in the lettuce. This can be observed in Test 2 group with noticeable longer internodal length compared to the other groups.

Lettuce in Test 2 group on week 6, the intermodal length is longer than the other groups

 

  1. Impact on leaf count

The addition of an extra NFT channel in Test 1 group does not result in any significant difference in leaf count compared to Control group. On the other hand, Test 2 group with longer light duration has significantly more leaves than the other groups starting from week 4. On week 6, Test 2 group has 8 more leaves compared to Control group and 9 more leaves compared to Test 1 group. The longer period of light for photosynthesis produces more energy and resources which results in higher leaf production. However, the leaves were showing stress symptoms, and the growth was stunted.

 

  1. Impact on biomass

There is no significant difference between the biomass of the Control group and Test 1 group. Test 2 group is significantly heavier than both the Control group and Test 1 group since week 2. At week 6, Test 2 group is 30.5g heavier than Control group and 37g heavier than Test 1 group. The longer light duration resulted in more production of energy by photosynthesis and accumulation of resources.

Condition of lettuce on week 6,

Test 2 group at the bottom level is noticeably larger compared to the other groups

 

  1. Abnormalities in plant growth

In the graph of average height, the trend shows that the height of lettuce in Test 2 group increase steadily while Control and Test 1 group follows sigmoid growth curve. The height anomaly in Test 2 group is likely due to 18 hours of light per day instead of 12 hours which caused the lettuce to bolt early on week 5. Test 2 group also started to show stress symptoms from week 3. The observed stress symptoms are tip burns, leaf curling and thickening and stunted growth of leaf blade.

Stress symptoms observed in Test 2 group on week 3 (left) and week 5 (right).

 

 

Conclusion

 

Comparing Test 1 group with Control group, adding an NFT channel significantly increases lettuce height by 0.93cm. However, it does not make any significant difference in terms of leaf count and biomass. The growlight configuration in Test 1 group does not causes any visual difference compared to the Control group.

 

Comparing Test 2 group with Control group, increasing light duration from 12 hours to 18 hours per day significantly increase the height of lettuce by 4.14cm and caused early bolting. It also increases the leaf count by 9 and increases the biomass by 37g but with severe stress symptoms and stunted growth of the leaves. The growlight configuration in Test 2 group resulted in lettuce that are not aesthetically pleasing which reduces its market value.

 

In conclusion, increasing the number of growlights in conjunction with NFT channels will negatively impact plant growth compared to the control group.

 

 

Implications for optimizing hydroponic systems and suggest potential areas for further research

 

Firstly, this experiment revealed that while increasing the number of NFT channels (Test 1) did not notably affect lettuce leaf count and biomass compared to the control group, extending the light duration (Test 2) from 12 to 18 hours per day significantly enhanced plant height, leaf count, and biomass. These findings underscore the significant role of light duration in optimizing growth metrics, although prolonged exposure to light (18 hours) also resulted in early bolting and stress symptoms in the plants. Hence, further research is needed to explore optimal light intensities and durations tailored to specific plant species and growth stages in hydroponics. This may involve investigating dynamic lighting strategies or variable light schedules to effectively manage stress and further optimize growth conditions.

 

Next, in terms of power consumption efficiency, both Test 1 and Test 2 groups maintained the same power per plant per day, although Test 2 consumed more total power due to extended light durations. This underscores the critical need for efficiency in power consumption as hydroponic operations scale up. So, for further research should explore energy-efficient lighting solutions and their influence on growth parameters. This could involve optimizing LED spectrums tailored to different plants' specific needs and integrating smart lighting controls to adjust intensity and duration dynamically. These advancements could enhance productivity while minimizing energy costs, contributing to sustainable and economically viable hydroponic farming practices.

 

Besides, the Test 2 group in the experiment displayed evident stress symptoms including tip burns, leaf curling, and stunted growth, attributed to prolonged exposure to light. Despite observing higher biomass and leaf count, these benefits came at the expense of compromised aesthetic quality and market value of the lettuce. Thus, further research is essential to develop effective strategies for managing plant stress under prolonged light exposure. Potential approaches could include supplementing with stress-relief nutrients or optimizing the light spectrum to mitigate photoinhibition. These efforts aim to sustain plant health and enhance overall crop quality in hydroponic systems, addressing the challenges posed by extended light durations on plant physiology and marketability.

  • Chai Wen Lin (UPM), Ngu Iee Ling (UPM)
[Research] The Effect of Synthetic Fertilizer and Organic Fertilizer on Plant Growth (Green ribbon)

[Research] The Effect of Synthetic Fertilizer and Organic Fertilizer on Plant Growth (Green ribbon)

 

INTRODUCTION

 

Cityfarm Malaysia contain 2 different type of fertilizer mainly the synthetic fertilizer which is composed of the Fertilizer A&B and the organic fertilizer which contain seaweed extracts.In hydroponic cultivation, plants require significant quantities of the three primary macronutrients, namely nitrogen, phosphorus, and potassium. Additionally, they also require the following essential micronutrients: calcium, magnesium, sulfur, iron, manganese, copper, zinc, molybdenum, boron, and chlorine(Sánchez, 2023).

 

As the trend shifts towards organic farming, an increasing number of individuals are opting for organic fertilizers when cultivating their crops. However, there exists a common concern among farmers and gardeners that using organic fertilizers may not yield the same results as synthetic fertilizers. Their concerns include not having the same yield, quality, size as well as overall health of the vegetables is not as good as compared to vegetables planted using synthetic fertilizers.

 

To address this issue, CityFarm Malaysia has initiated a small-scale experiment aimed at scrutinizing the disparities in the growth of vegetables, with a primary emphasis on the Green Ribbon lettuce, when nurtured using synthetic and organic fertilizers.

 

 

 

METHODOLOGY

To commence this experiment, we selected "green ribbon" vegetables, which were initially planted on 10/7/2023, making them approximately 3-4 weeks old at the outset. We established two distinct Nutrient Film Technique (NFT) systems, each equipped with its own water tank containing a different type of fertilizer. Specifically, System A was supplied with organic fertilizer, while System B received synthetic fertilizer, denoted as Fertilizers A&B. The duration of the experiment spanned approximately 5 weeks, culminating in the harvesting phase. Throughout this period, we meticulously recorded the weight, height, and leaf count of each vegetable on a weekly basis.

 

The fertilizer used in this experiment. CityFarm Organic Fertilizer(left) and CityFarm AB Fertilizer(right)
Figure 1  the fertilizer used in this experiment. CityFarm Organic Fertilizer(left) and CityFarm AB Fertilizer(right)

 

To ensure consistent conditions, we maintained nearly identical Electrical Conductivity (EC) values in both tanks. Additionally, we aimed to keep the pH levels within the range of 5.5 to 6.5. However, an unforeseen pH drop occurred in the organic tank due to the introduction of mosquito bti. The pH dipped to approximately 4, prompting us to rectify the situation by employing calcium carbonate powder to raise the pH back within the desired range. The data collected is then tabulated and a paired T-test is then run in order to identify if there is significant difference between the 2 batches of vegetables growing from synthetic and organic fertilizer.

 

 

 

RESULT

 

Table 1 Raw data for the weekly measurement for weight,height and leave number for the lettuce

 

Average Weight (g) Average Height (cm) Leaf Number
Row A Row B Row A Row B Row A Row B
1 21 20 2.8 2.2 8 5
2 21 20 3.0 2.1 7 6
3 20 20 4.0 2.5 5 5
4 21 18 3.5 2.1 7 7
5 21 19 3.0 3.1 6 4
6 22 18 3.3 4.0 5 5
7 22 20 3.2 3.5 7 7
8 21 18 3.0 2.5 7 5
9 23 18 2.0 3.5 6 5
10 22 19 2.7 2.5 5 6
11 20 20 4.2 2.4 4 4
12 20 20 3.1 3.0 5 4
13 23 22 6.5 4.5 11 8
14 22 21 5.4 4.8 9 9
15 24 21 6.0 5.0 13 6
16 23 21 6.7 5.5 9 6
17 23 21 3.5 6.5 9 11
18 24 21 5.0 7.0 10 8
19 23 23 5.0 7.8 8 10
20 23 21 3.0 6.0 10 9
21 25 24 4.0 6.4 8 9
22 24 22 4.5 4.0 9 8
23 23 21 6.0 5.3 7 8
24 21 21 4.3 5.4 8 7
25 25 22 10.5 5.5 17 10
26 26 25 7.0 7.0 13 12
27 27 26 11.2 8.0 23 11
28 31 23 10.3 8.2 15 9
29 26 26 9.0 9.0 13 9
30 28 26 8.9 11.0 15 12
31 30 28 10.2 10.9 14 14
32 27 24 9.6 7.5 14 12
33 31 31 10.5 10.0 13 15
34 31 25 10.3 8.5 14 10
35 29 25 10.3 7.4 12 11
36 23 25 8.0 7.5 13 10
37 40 38 13.0 12.0 26 11
38 41 46 12.5 13.0 16 14
39 54 54 15.0 14.0 30 17
40 52 45 13.2 12.8 21 13
41 42 53 12.5 13.8 20 18
42 45 47 13.5 15.0 20 16
43 51 41 14.5 14.4 21 14
44 47 46 13.0 13.6 18 17
45 55 59 14.2 16.5 20 17
46 50 40 12.0 14.5 18 14
47 59 43 15.5 15.0 19 13
48 36 45 12.5 14.0 16 17
49 57 56 13.4 14.9 35 18
50 56 70 16.5 13.7 26 20
51 77 85 16.5 15.5 46 19
52 74 70 14.0 15.2 35 18
53 54 82 14.6 15.3 27 23
54 66 73 16.0 16.7 37 21
55 80 61 18.3 15.7 31 19
56 72 68 16.2 16.8 32 24
57 91 86 17.2 18.3 31 22
58 73 56 14.5 17.3 28 20
59 86 63 17.4 18.2 28 18
60 51 67 14.3 16.0 23 21

 

 

T-Test for the weight of lettuce for both system A and B

H0: There is no significant difference between the means of the weight for both lettuce from system A and B .

H1: There is a significant difference between the means of the weight for both lettuce from system A and B .

 

P-value calculated : 0.153961112

 

P-value calculated is more than the alpha value which is 0.05 which indicates that the null hypothesis, H0 is accepted , there is no significant difference between the means of the weight for both lettuce from system A and B.

 

T-Test for the height of lettuce for both system A and B 

H0: There is no significant difference between the means of the height for both lettuce from system A and B .

H1: There is a significant difference between the means of the height for both lettuce from system A and B .

 

P-value calculated : 0.969899

 

P-value calculated is more than the alpha value which is 0.05 which indicates that the null hypothesis, H0 is accepted , there is no significant difference between the means of the height for both lettuce from system A and B.

 

T-Test for the leave number of lettuce for both system A and B

H0: There is no significant difference between the means of the leave number for both lettuce from system A and B .

H1: There is a significant difference between the means of the leave number for both lettuce from system A and B .

 

P-value calculated : 0.00000017

 

P-value calculated is less than the alpha value which is 0.05 which indicates that the alternative hypothesis, H1 is accepted , there is a significant difference between the means of the leave number for both lettuce from system A and B.

 

 

Table 2 average mean for all the weekly measurements of the lettuce

Weight (g) Height (cm) Leaf Number
Row A Row B Row A Row B Row A Row B
1st week 21.2 19.2 3.2 2.8 6 5
2nd week 23.2 21.6 5.0 5.7 9 8
3rd week 27.8 25.5 9.7 8.4 15 11
4th week 47.7 46.4 13.5 14.1 20 15
5th week 69.8 69.8 15.7 16.1 32 20

 

 

line graph showing the average mean of the plant weight for the 5 weeks for both systems

Figure 2 line graph showing the average mean of the plant weight for the 5 weeks for both systems

 

Based on the graph displayed, it is apparent that the lettuces cultivated in System A, which utilizes organic fertilizer, initially exhibit greater weight compared to the lettuces grown in System B. However, over time, this weight disparity gradually diminishes, and ultimately, both groups converge to attain an equivalent average weight by the time of harvesting.

 

line graph showing the average mean of the plant height for the 5 weeks for both systems

Figure 3 line graph showing the average mean of the plant height for the 5 weeks for both systems

 

The graph clearly illustrates that the lettuce plants in System A initially exhibit greater height than those in System B, particularly around the third week of growth. However, as time progresses, the height of the lettuce plants in System A levels off and appears to reach a plateau. Interestingly, by the time of harvesting, the lettuce plants in System B have managed to attain a slightly greater height compared to those in System A.

 

line graph showing the average mean of the leave number of the lettuces for the 5 weeks for both systems

Figure 4 line graph showing the average mean of the leave number of the lettuces for the 5 weeks for both systems

 

The graph provides a clear visual indication that the lettuce plants cultivated in System A, which incorporates organic fertilizer, consistently display a higher number of leaves when compared to the lettuce plants in System B. The disparity between these two groups of vegetables is quite pronounced. In particular, the lettuce plants in System A eventually reach an average leaf count of approximately 31 leaves, whereas the lettuce plants in System B only manage to achieve an average leaf count of around 20 leaves.

 

DISCUSSION

 

Based on the data presented, it can be concluded that there is a subtle distinction between lettuce plants grown using organic fertilizers and those cultivated with synthetic fertilizers.The  lettuce plants nurtured with organic fertilizers tend to have shorter stature but boast a higher leaf count in comparison to their counterparts grown with synthetic fertilizers. This indicates that while organic fertilizers may result in smaller plants, they compensate by yielding more leaves.

Besides, both sets of lettuce plants, whether cultivated with organic or synthetic fertilizers, appear to yield similar weights at the time of harvesting. This suggests that the choice of fertilizer does not substantially impact the overall weight of the lettuce. A notable discovery is that lettuces cultivated with organic fertilizers tend to possess a sweeter taste, while those grown with synthetic fertilizers may exhibit a more bitter flavor profile. This taste disparity is attributed to the potential overabundance of certain nutrients associated with chemical fertilizers, which can lead to bitterness in vegetables(Thomas, 2023).Another facts to take note is that It's essential to acknowledge that lettuces grown with organic fertilizers present certain challenges, such as smaller leaves and a softer plant texture. In contrast, lettuce nurtured with synthetic fertilizer is characterized by a crunchier and firmer texture. Another observable distinction lies in the coloration of the lettuce. Lettuce grown with synthetic fertilizer typically displays a lighter green hue and a fresher appearance, whereas lettuce cultivated with organic fertilizer tends to exhibit a darker green color and may not appear as fresh.

 

the difference in the size of the leaves growing from synthetic fertilizer(left) and organic fertilizer (right)

Figure 5 the difference in the size of the leaves growing from synthetic fertilizer(left) and organic fertilizer (right)

 

difference in the overall size and color of the lettuces growing from synthetic fertilizer(left) and organic fertilizer (right)

Figure 6 the difference in the overall size and color of the lettuces growing from synthetic fertilizer(left) and organic fertilizer (right)

 

 

 

In addition to its other attributes, an intriguing discovery is that CityFarm's organic fertilizer incorporates seaweed extract. This extract is derived from various brown seaweeds, including Sargassum, Laminaria, and Ascophyllum, and it boasts not only essential macro and micro nutrients, vitamins, and antibiotics but also a medley of growth hormones like auxin, gibberellin, cytokinin-kinetin, and cytokinin-zeatin. These growth hormones, richly present in seaweed extract, play a pivotal role in promoting plant growth by facilitating processes such as increased production, enhanced protein synthesis, cell division, and differentiation. Additionally, they contribute to fruit cell development and regulate overall plant growth, fostering optimal growth trajectories. Moreover, studies have demonstrated that the application of seaweed extract can augment nutrient content within leaves, ultimately leading to increased plant weight. This effect is attributed to the involvement of growth hormones in nutrient absorption and transportation processes within plants. Notably, seaweed extract also contains growth hormones like indole-3-acetic acid (IAA) and cytokinins, organic compounds known for stimulating growth through mechanisms such as protein synthesis, cell division, and nutrient metabolism. These findings underscore the multifaceted benefits of seaweed extract as an organic fertilizer, promoting robust plant growth and bolstering crop production (Yusuf et al.,2021) .

 

 

 

REFERENCES

 

R Yusuf et al 2021 IOP Conf. Ser.: Earth Environ. Sci. 828 012011

 

Sánchez, E. (2023). Hydroponics Systems and Principles Of Plant Nutrition: Essential Nutrients, Function, Deficiency, and Excess. Retrieved from https://extension.psu.edu/hydroponics-systems-and-principles-of-plant-nutrition-essential-nutrients-function-deficiency-and-excess

Thomas, R. (2023, May 7). 5 Reasons Organic Fertilizers Grow Better Vegetables. Dengarden. https://dengarden.com/gardening/Best-Garden-Fertilizer-For-Vegetables#:~:text=Chemical%20fertilizers%20can%20lead%20to,bland%20or%20bitter%2Dtasting%20vegetables.

  • Tan Weng Hui (UM)
[ArtIcle] Urban Farming: Opportunities and Challenges

[ArtIcle] Urban Farming: Opportunities and Challenges

Traditionally, urban societies employed a variety of methods to cultivate food crops in their yards. Malaysian Agricultural Research and Development Institute (MARDI) and the Department Of Agriculture (DOA)'s introduction of innovative technology has enticed urban residents to adopt and utilize them in their home gardens or community farms. Aquaponics, aeroponics, hydroponics, and vertical farming are Malaysian communities' four most prevalent urban gardening technologies. Aquaponics is a technique that combines traditional aquaculture (raising fish and crayfish in tanks) and hydroponics (growing plants in water) in a symbiotic environment. Hydroponics and fertigation use nearly identical techniques to ensure that nutrients or fertilizers are delivered directly to the roots of the plants, hence preventing root infections. Hydroponics is one of the most popular techniques for quick and simple farming. Crops planted vertically are referred to as vertical farming. More crops can be grown on a smaller amount of land with this strategy. This means that more food can be produced with less land at the same time it opens many windows for urban citizens.

  • Putera Muhammad Hazwan Hakim Bin Hamzah (UniSZA)
[Article] The Future of Indoor Vertical Farming

[Article] The Future of Indoor Vertical Farming

The future of indoor vertical farming looks bright, as this innovative method of growing crops continues to gain popularity and develop new technologies. Indoor vertical farming offers numerous benefits over traditional outdoor farming methods, including the ability to grow crops in urban areas, reduced water usage, and the ability to grow a wider variety of crops. As the world's population continues to grow and urbanization increases, the demand for fresh, local produce will only continue to rise, making indoor vertical farming an increasingly important part of the global food system.

One of the key developments that will shape the future of indoor vertical farming is the increased use of automation and data analytics. As indoor vertical farms become larger and more complex, automation will play a crucial role in managing and optimizing the growing process. For example, sensors and other technologies will be used to monitor and control factors such as temperature, humidity, and lighting, allowing for precise control over the growing environment. Data analytics will also be used to analyze vast amounts of data collected from sensors and other sources, helping farmers to make more informed decisions and improve their operations.

 

 

Another important factor that will shape the future of indoor vertical farming is food security. As the global population continues to grow, there will be increasing pressure on the world's food supply, and indoor vertical farming will play a crucial role in meeting this demand. Indoor vertical farms can produce fresh, healthy food even in areas where traditional outdoor farming is not possible, such as in cities and other urban areas. This will help to ensure that people have access to the food they need, even in regions where outdoor farming is not feasible.

 

 

 

The future of indoor vertical farming will also be shaped by advances in lighting technology. As we continue to develop new and more efficient lighting systems, indoor vertical farmers will be able to grow more diverse and nutritious crops, even in areas where sunlight is limited. For example, new LED lighting systems will allow farmers to simulate the natural light spectrum, providing plants with the specific wavelengths of light they need to thrive. This will help to improve crop yields and reduce the energy consumption of indoor vertical farms.

 

 

Finally, the future of indoor vertical farming will be influenced by advances in our understanding of plant biology and agriculture. As we continue to learn more about how plants grow and thrive, we will be able to develop new growing techniques and strategies that will allow us to grow even more diverse and nutritious crops in indoor vertical farms. This will help to further improve the sustainability and efficiency of indoor vertical farming, and will allow us to produce even more healthy, delicious food for people around the world.

Overall, the future of indoor vertical farming looks bright and full of promise. As technology continues to advance and our understanding of plant biology grows, indoor vertical farming will become an even more important part of the global food system, helping to feed a growing population and provide access to fresh, healthy produce in urban areas.

 

The contents of this article is generated by AI

  • ChatGPT & DALL·E 2
[Research] The Effect of Water Temperature on Plant Growth

[Research] The Effect of Water Temperature on Plant Growth

Introduction

The growth and development of plants can be influenced by water temperature in hydroponic cultivation. The physiological process of plants will be affected by the plant metabolic activities such as phenolic compounds, nutrient uptake, chlorophyll pigment formation, and photosynthesis. (Nxawe et al., 2011). The main function of plant roots is to absorb water and nutrients from the growing medium and later conduct them to the stem of the plant. Thus, besides electrical conductivity value, pH value and environment temperature, regulating water temperature is a crucial part in hydroponic cultivation because the temperature in the root zone may make a notable difference in plant growth.

  • Lee Shen Ni (UPM)
[Article] Urban Farming in Malaysia

[Article] Urban Farming in Malaysia

Urban Farming in Malaysia

 

Urban farming is becoming more popular in the agricultural field nowadays, plenty of groups and entrepreneurs started venturing into it in the agriculture market to seek more potential. What is so special about urban farming till it gains greater interest from the community over the year, let us learn about it!
.
Urban farming is defined as farming activities that mainly occur in a community located in a city or highly populated urban areas. It involves farming activities such as the production, processing, marketing, and delivery of farming products from farms to the hand of consumers. Urban farms are able to create better food security for the community whereas it focuses on improving food access, food transportation and food quality. On other hand, urban farms have become one of the solutions to solve food accessibility issues and the challenges of long and complex supply chain structures in serving fresh food production to high populated consumers. Thus, urban farms play a crucial role in maintaining food security globally, it is important to utilise spaces in which land spaces are more limited over the year. Second, it is important to let consumers have easier access to fresh food by reducing the intermediaries and reducing nutrient deterioration and food damage during transportation. Besides that, it is important because urban farms require less use of industrial chemicals and more practicing organic farming, the food production is safer to be eaten. Last but not least, it is important because urban farms are more toward technological innovations compared to traditional farming, which reduces farmers' burden and increases productivity in food production.
.
There are different types of urban farms that you can usually see in Malaysia.
  • Backyard gardens
  • Street landscaping
  • Greenhouses
  • Rooftop gardens
  • Green walls
  • Hydroponic
  • Aquaponics  
.
Excited to know more about urban farm culture in Malaysia?
Let me introduce these 10 notable urban farms in Malaysia with their own unique specialties.
.
.
 
1. Cultiveat
Image source from Cultiveat/Facebook  
.
Size
1 acre of land
.
Location
20, Jalan PJS 11/18, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
.
Cultiveat was established by Mr.John-Hans Oei in 2019. It is practicing sustainable precision farming on its farm. The farm is built with indoor protection to protect their vegetable crops from pests, which make their vegetables free from pesticides. A few advanced technologies have been used in this precise farm such as the auto watering system, sensors and automated roof panels. The technologies automatically regulate the light, humidity, temperature and water levels in the farm, which is able to help vegetables grow better in control. As for the production, Cultiveat plants its seedlings in a pot called cartridge. The specially designed cartridge enables seedlings to hold the exact amount of nutrients needed for optimal growth and it can biodegrade within 3 years. The fresh vegetables in the cartridge will be delivered to you as live plants.
.
Find it more at
Official Website : Cultiveat
Facebook : Cultiveat
Instagram : Cultiveat
.
.
.
2. Vegetable Co.
Image source from Vegetable Co./Facebook
.
Size
320 square feet of land
.
Location
Parking lot along roadside in Kuala Lumpur
.
Vegetable Co. set up its farm in a 320 square foot old shipping container. It has limited space for farming, but this small farm is full of modern technologies. The inside view of the shipping container has hydroponic systems that are stacked vertically and there are some greens coiling around the wall-mounted trellises. The farmers are practicing modern indoor farming techniques to grow pesticide-free vegetables, they effectively use the Internet of Things (IoT) and automation in vegetable production. For instance, the FutureFarmsOS system in farms is able to control all the variables of plant growth during production which allows vegetables to grow in optimal quality. Meanwhile, Vegetables Co. also utilised renewable energy to cover partial power supply in farms. This modern farm can definitely say that it is one of the best tech-based indoor farms in Malaysia.
.
Find it more at
Official Website : The Vegetable Co.
Facebook : The Vegetable Co.
Instagram : thevegetable.co 
.
.
.
3. Kebun-Kebun Bangsar (Veggie Farm)
Image source from Kebun-Kebun Bangsar/Facebook
.
Size
2.5 acres of land
.
Location
Lorong Bukit Pantai, Bangsar, 59100 Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia.
.
Kebun-Kebun Bangsar is founded by Mr. Ng Sek Sen, who is a landscape architect. This place gives you a beautiful view of the KL skyline because it sits on a hill in a residential area. Many nearby residents come here for a calm relaxation from the hustle and bustle. It is an urban community farm that plants plenty of crops and rears free-range animals. Besides walking in the garden, you are also allowed to interact and feed the animals there. The harvested crops in the farm will be donated to soup kitchens and the underprivileged in the city. There are also various family-friendly programmes often held here for the community such as the sustainable farmer market for selling the fresh produce in the garden and the weekly workshops. Almost everything in Kebun-Kebun Bangsar is taken care of by the volunteers, you can join them as a volunteer if you are looking to help with the garden.
.
Find it more at
Facebook : Kebun-Kebun Bangsar
Instagram : kebunkebunbangsar
.
.
.
4. E-Farm
Image source from E-Farm/Facebook & website
.
Size
1,000 square feet
.
Location
2, Jalan Damai Rasa 1, The Corner @ Alam Damai, 56000 Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia.
.
E-Farm is an aquaponics commercial farm that was established by Sean Lee and Eddie Soong. This big-scale aquaponics farm before is just a basic DIY aquaponic system that works as the founders’ hobby. They turn their hobby into commercial use after they feel motivated to produce chemical-free crops for the community around them. The greenhouse of E-Farm has 120 vertical towers in its aquaponics system, each tower will hold 90 plants, the whole farm is growing over 11,000 crops including leafy greens, hardy vegetables and herbs. The crops are grown in clay balls and cocopeat medium which help to maintain cleanliness and prevent crops diseases. There are also about 1,000 clean and chemical-free red tilapia that can be produced in its aquaponics system. Furthermore, the founders had developed an e-grocery to sell all their fresh products, you can just simply order from the e-grocery and wait for their delivery. Besides getting fresh produce via online order, you can also have a visit to the farm to harvest some fresh vegetables directly.
.
Find it more at
Official Website : E-Farm
Facebook : E-Farm
Instagram : efarm._
.
.
.
5. Babylon Vertical Farm
Image source from Babylon Vertical Farm/Facebook
.
Location
H-P-1, Level PH, 12, Jalan PJU 5/1 Encorp Strand Garden Offices, Kota Damansara, 47810 Petaling Jaya, Selangor, Malaysia.
.
Babylon Vertical Farm uses an indoor hydroponics farming method to grow leafy greens on its farm. It was founded in 2016 by Stuart Thomas and this farm is a social enterprise accelerator under the Malaysian Global Innovation and Creativity Centre (MaGIC). Babylon Vertical Farm runs a B2B farm, it mainly produces pest-free vegetables and herbs to supply to its business clients such as restaurants and supermarkets. It also grows microgreens for sales, the microgreens gain a great demand from the high-end restaurant. The founder and his team could see the potential in the microgreens business. Therefore, they feel the desire to increase the microgreens production, which is from 1,000 kg a month to 2,00-3,000 kg a month. Now, they have proved that they gain more business profit with the microgreens production. Besides fresh production, Babylon Vertical Farm also provides consulting and farm building services to the public who are interested in urban farming.
.
Find it more at
Official Website : Babylon Vertical Farms
Facebook : BVFMalaysia
Instagram : bvfmicrogreens
.
.
.
6. Boomgrow Farm
Image source from BoomGrow/Facebook & e27
.
Size
40 feet of land
.
Location
Unit 1-2, Level 1, Office Block, Pusat Kreatif Kanak-Kanak Tuanku Bainun, 48 Jalan Tun Mohd Fuad, Taman Tun Dr Ismail, 60000 Kuala Lumpur, Malaysia.
.
BoomGrow Farm is a tech-driven indoor urban farm that was built in repurposed shipping containers by efforts of the founders, Jay, K Muralidesan and Shan Palani. It has 2 farms and each is located in Kuala Lumpur and Langkawi. These 5G showcase farms enable IoT to grow clean greens in a controlled and precise farming environment. The farmers there rely on machine learning and data analytics to tailor each input such as the temperature, humidity and light level to the respective plant to produce greens that have a tastier flavor. Moreover, the greens are grown with zero pesticides, herbicides or any preserving chemicals and nitrate accumulation in plant tissues wasn't an issue for their production. You can find a variety of types of greens on the farm, among them will have lettuces, kale, swiss chard, basil, and mints. Besides demand from the community around, BoomGrow also caters its greens to hotels and restaurants.
.
Find it more at
Official Website : BoomGrow Farms
Facebook : BoomGrow
Instagram : boomgrow
.
.
.
7. Sunway XFarms
Image source from Sunway XFarm/Facebook
.
Size
50,000 square feet of land
.
Location
Duplex, Jalan PJS 11/26, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
.
Sunway XFarms was launched by Sunway Group in the heart of Sunway City KL. It has an outdoor hydroponic greenhouse, an indoor vertical farm and two aquaponic farms. The farm is using IoT to have efficient plant management to grow pesticide and herbicide-free crops such as Asian greens, herbs and microgreens. Every crop from the farm is safe to eat because it has obtained MyGap and MyFood certification for urban farming, which means the farm is following strict farming procedures to produce organic crops. Sunway XFarms has launched a Grower (Growing and Owning) model to allow anyone who wants to grow their own fresh produce but lacks the space and time to manage it. The farmers there will help you to manage your small farm plot from the planting until the harvesting process, you can simply have vegetable supplies weekly by subscribing to the model. Furthermore, Sunway XFarms also working with the Agriculture and Food Industries Ministry put effort into conducting workshops and selling various farming kits and systems to the public.
.
Find it more at
Official Website : Sunway XFarms
Facebook : Sunway XFarms
Instagram : sunway farms
.
.
.
8. Vegetory
Image source from Vegetory/Facebook
.
Location
No 28, Jalan Suria Puchong 4, pusat perniagaan suria puchong, Puchong Gateway, 47110 Puchong, Selangor
.
Vegetory uses the Plant Factory Indoor Farming (PFIF) concept to grow leafy greens in the city, it was founded in 2016 by Roy Liew and Celleste Kok. This plant factory grows leafy greens hydroponically in a controlled indoor environment. One of its famous in-store farms' outlets is in Bangsar Shopping Centre, you can notice that the in-store farm has a laboratory-like interior with LED light. They built a modular farm system in grocery stores to allow customers to walk in to pick the produce themselves freshly there. Besides providing a transparent purchasing process, customers are also able to enjoy the harvest process. Vegetory mainly produces lettuces such as mizuna, crisphead, red oak and romaine, there is also kale and rocket salad grown in the plant factory. Salad lovers definitely will love to bring some greens from here to their bowl.  Moreover, Mori Kohi, a farm-to-table cafe opened by Vegetory, serves Western-style Japanese dishes that use fresh greens from the plant factory as the ingredients. You can taste the delicious and nutritious meal with the freshest vegetable supply at the cafe.
.
Find it more at
Official Website : vegetory
Facebook : Vegetory
Instagram : vegetory
.
.
.
9. Farmy Vertical Farms
Image source from Farmy Vertical Farms/Facebook & website
.
Size
1200 square feet of land
.
Location
Lot S33, Encorp Strand Mall, Jalan PJU 5/22, Kota Damansara, 47810 Petaling Jaya, Selangor.
.
Farmy Vertical Farm was founded by Shoma Tsubota. It is an urban farm that was built in a shopping mall. The exterior of the farm is surrounded by a wall and it has a window to let the public view the indoor farming process. It has an 18 feet height vertical farm with 5 growing racks, each rack containing 7 layers of growing spaces for the vegetables. The vegetables are grown in an indoor hydroponics system with customised LED growth lights as the light source for the plant, thus the farmers are able to eliminate the risks such as unpredictable weather, pests problems and plant diseases during the farming process. They are also using an auto-dosing system with IoT and sensors to efficiently manage the irrigation system, it controls the electrical conductivity and ph level of fertiliser water always at an ideal level in the farm. With the effort of the farmers there and the technologies, this farm can produce about 1.5 tonnes of leafy vegetables every month. The examples of fresh greens produced by Farmy Vertical Farm include kale, basil, mustard, wasabi salad, bok choy and microgreens, and all of them are pesticide and herbicide-free to eat.
.
Find it more at
Official Website : Farmy : Vertical Farm Malaysia
Facebook : Farmy
Instagram : farmy.my
.
.
.
10. Agroz
Image source from Agroz/Facebook, digitalnewsasia & soyacincau
.
Size
10,000 square feet
.
Location    
Mines 2 Outdoor Car Park South KL, Jalan Mines 2, Mines Wellness City, 43300 Seri Kembangan, Selangor. 
.
Agroz runs various commercial indoor vertical farms in high populated urban spaces. It has a motive "Farm to Fork in minutes"  in which each farm will be placed within 30 minutes to reach consumers. Currently, Agroz has successfully run 3 different sizes of smart indoor vertical farms in Selangor. It owns a small farm in Seri Kembangan where the greens are growing in modified shipping containers. There is a 3,000 square feet warehouse farm in Sungai Buloh and a 90,000 square feet commercial indoor farm in Shah Alam. These smart farms are using future technologies to grow the greens such as IoT, AI, machine learning, data analytics and blockchain. We can know that Agroz is practicing sustainable and modern precision agriculture through its smart indoor vertical farms. Gerard Lim, the founder and CEO of Agroz Group said that Agroz ambitiously aims to scale up the smart indoor vertical farm to 10,000 square feet of space to produce 3 tonnes of fresh vegetables monthly to serve consumers nearby. As for the distribution of fresh produce, Agroz is sold directly to consumers through subscription programmes and it is also supplied to grocers, restaurants and the hospitality industry around the farm area.
.
Find it more at
Official Website : Agroz Group
Facebook : Agroz Group
Instagram : agrozgroup    
  • Lee Shen Ni (UPM)